Period-Amplitude Co-variation in Biomolecular Oscillators

نویسندگان

  • Venkat Bokka
  • Abhishek Dey
  • Shaunak Sen
چکیده

The period and amplitude of biomolecular oscillators are functionally important properties in multiple contexts. For a biomolecular oscillator, the overall constraints in how tuning of amplitude affects period, and vice versa, are generally unclear. Here we investigate this co-variation of the period and amplitude in mathematical models of biomolecular oscillators using both simulations and analytical approximations. We computed the amplitude-period co-variation of ten benchmark biomolecular oscillators as their parameters were individually varied around a nominal value, cataloguing instances where an increase in period is accompanied by an increase or decrease in amplitude as well as more complex co-variations. To account for the amplitudes of the many biomolecular species that may be part of the oscillation circuit, we use a power norm-based amplitude metric, finding an increase of instances where an increase in period correlates with an increase in this amplitude metric. Finally, we calculate ”scaling laws” of period-amplitude co-variation for a subset of these benchmark oscillators, finding that as period increases the amplitude increases or remains constant. These results should help to understand the amplitude-period co-variation of oscillators in biomolecular as well as other contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Oscillation Amplitude and Phase Error in Multiphase LC Oscillators

Abstract   This work proposes a novel method to find the phase error and oscillation amplitude in multiphase LC oscillators. A mathematical approach is used to find the relationship between every stage's output phase and its coupling factor. To much more general analysis, every stage assumed to have a different coupling factor. The mismatches in LC tanks are considered as the main source of pha...

متن کامل

A self-regulating biomolecular comparator for processing oscillatory signals.

While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is ofte...

متن کامل

Duffing-Type Oscillators with Amplitude-Independent Period

Nonlinear oscillators with hardening and softening cubic Duffing nonlinearity are considered. Such classical conservative oscillators are known to have an amplitude-dependent period. In this work, we design oscillators with the Duffing-type restoring force but an amplitude-independent period. We present their Lagrangians, equations of motion, conservation laws, as well as solutions for motion.

متن کامل

Power Series -Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators

Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear oscillation systems of cub...

متن کامل

A New Solution to Analysis of CMOS Ring Oscillators

New equations are proposed for frequency and amplitude of a ring oscillator. The method is general enough to be used for all types of delay stages. Using exact largesignal circuit analysis, closed form equations for estimating the frequency and amplitude of a high frequency ring oscillator are derived as an example. The method takes into account the effect of various parasitic capacitors to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017